Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys Chem ; 309: 107229, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38555653

ABSTRACT

The study specifically investigates the solubilities of L-isoleucine and L-tyrosine in water-mixed solvent systems (DMF, DMSO, and ACN), exploring the behaviour of amino acids in complex environments. The experimental methods prioritize meticulous solvent purification to ensure reliable results. The work explores solubility data, uncovering temperature-dependent trends and intricate interactions influencing solubility in the chosen mixed solvent systems. The study emphasizes the impact of thermodynamic properties, solvent-solvent interactions, and amino acid structure on solubility patterns. The broader implications highlight the relevance of understanding amino acid behaviour in diverse solvent environments, offering potential applications in cosmetics and pharmaceutical industries. The distinct solubility patterns contribute valuable insights, enhancing on the understanding of the solution stability and interactions of L-isoleucine and L-tyrosine in different solvent systems. In conclusion, work suggests the enhanced utilization of L-isoleucine and L-tyrosine in various industries, driven by a profound understanding of their solubility in mixed solvent systems. The research expands our knowledge of amino acid behaviour, paving the way for advancements in industries relying on protein-based products and technologies.


Subject(s)
Amino Acids , Isoleucine , Solvents/chemistry , Solubility , Tyrosine , Thermodynamics , Water/chemistry
2.
Biophys Chem ; 307: 107195, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38325036

ABSTRACT

This paper delves into an investigation of the solubility characteristics of L-tryptophan within binary solvent systems containing aqueous acetonitrile. The primary emphasis of the study revolves around assessments based on mole fractions. The study utilizes these solubility values to assess thermodynamic constraints, including solution entropies and solution transfer free energetics. The calculated thermodynamic energies are correlated with interaction parameters, including Gibbs free energies and entropies, pertaining to the transfer of L-tryptophanfrom water to binary solvent blends of acetonitrile and water. Mathematical expressions are utilized to determine the transfer Gibbs free energies for chemical interactions, and the consequent entropies are clarified within the framework of solvent-solvent interactions. To expound upon the stability of L-tryptophan within the water-acetonitrile mixed system, we investigate the energetic aspects related to the transfer of chemicals Gibbs free energies. Additionally, standard temperature (298.15 K) is employed to calculate various related physicochemical parameters of solute/solvent.


Subject(s)
Tryptophan , Water , Temperature , Solubility , Thermodynamics , Solvents
3.
Sci Rep ; 14(1): 89, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38168121

ABSTRACT

Borate antimony glass doped with vanadium oxide V2O5 encoded into a [BSV glass system] was prepared with the traditional melt quenching technique. The Nickel ferrite [NiFe2O4] was prepared using Flash auto-combustion and mixed at a fixed ratio of 0.05 gm into the glass matrix to form a BSV- composite glass system [BSV / NiFe2O4], which was also prepared using the traditional melt quenching technique. The X-Ray diffraction pattern was used to characterize the glass samples and indicated their amorphous structure, with different structure phases for different levels of V2O5 content. Ranging from 200 to 1100 nm, UV-Vis spectroscopy was used to study the optical properties of the samples. The glass was found to absorb electromagnetic waves with wavelengths lower than 500 nm, while the energy gap decreased from 2.46 eV for 0.1 mol% V2O5 to 2.39 eV for 0.5 wt% V2O5. The Urbach energy also had the same behavior, and decreasing from 0.226 to 0.217 eV. On the other hand, the refractive index increased when V2O5 was added. The thermal characteristics of a [BSV / NiFe2O4] system, such as, glass transition temperature [Formula: see text], onset temperature [Formula: see text], crystallization temperature [Formula: see text] and melting temperature [Formula: see text] were studied using a Differential Scanning Calorimeter. Using continuous and pulsed laser radiation, a [BSV-0.1 V2O5 / NiFe2O4] sample was exposed to laser irradiation to observe its effect on the optical features of the glass. Laser irradiation significantly changed the absorbance spectrum, while the energy gap decreased as time increased. The pulsed laser was found to have a more power-full and uniform effect compared to continuous laser. Time-dependent density function theory was used to optimize the geometrical structure of the glass and study the effect of the formation of 4- coordinate boron atoms on its properties.

4.
Biophys Chem ; 306: 107154, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38142475

ABSTRACT

This research provides a thorough investigation into the solubility behavior and solution thermodynamics of l-threonine in significant organic solvent systems. The work was done on measuring the actual solubility and subsequently calculating overall transfer solvation free energetics (∆Genergetic0i) and transfer entropies (∆St0i) at a temperature of 298.15 K. These measurements were performed as l-threonine transitioned from water to different water-organic mixed solvents systems. The saturated solubilities of l-threonine were determined using the 'gravimetric method' at five equidistant temperatures namely 288.15 K, 293.15 K, 298.15 K, 303.15 K and 308.15 K. By analyzing the data on solubility, we further obtained the different energies involved in solvation related issues. In the case of single solvents, the nature of solubility of l-threonine was observed like: dimethylsulfoxide (DMSO) < acetonitrile (ACN) < N, N-dimethylformamide (DMF) < ethylene glycol (EG) < water (H2O), irrespective of the experimental conditions. Specifically, at 298.15 K, the solubilities of l-threonine in single solvents were found to be as follows: 0.8220 mol per kg of water, 0.3101 mol per kg of EG, 0.1337 mol per kg of DMF, 0.1107 mol per kg DMSO and 0.1188 mol per kg of ACN. This research critically examines the relationship between the experimental saturated solubility of l-threonine and the complex properties influencing its solvation energy in diverse aqueous organic solvent systems.


Subject(s)
Dimethyl Sulfoxide , Water , Temperature , Solubility , Solvents , Thermodynamics
5.
Small ; 19(26): e2300492, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36938900

ABSTRACT

The design of water-stable photo and electrocatalysts of metal-organic frameworks (MOFs) for its promising catalytic applications at long-term irradiations or persisted current loads is extremely necessary but still remains as challenging. A limited number of reports on Ti-MOF-based catalysts for water splitting are only available to explain and understand the correlation between the nature of materials and MOFs array. Herein, spherical Ti-MOFs and corresponding partially annealed hollow core-shell Ti-MOFs (Ti-MOF/D) are designed and the correlation with their photo(electro)catalytic water splitting performance is evaluated. The switchable valence state of Ti for the Ti-MOF as a function of molecular bonding is the possible reason behind the observed photocatalytic hydrogen generation and light-harvesting ability of the system. Besides, the defect state, solid core-shell mesoporous structure, and active sites of Ti-MOF help to trap the charge carriers and the reduction of the recombination process. This phenomenon is absent for hollow core-shells Ti-MOF/D spheres due to the rigid TiO2 outer surface although there is a contradiction in surface area with Ti-MOF. Considering the diversity of Ti-MOF and Ti-MOF/D, further novel research can be designed using this way to manipulate their properties as per the requirements.

7.
Sci Rep ; 12(1): 15495, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36109533

ABSTRACT

For technical and radioprotection causes, it has become essential to find new trends of smart materials which used as protection from ionizing radiation. To overcome the undesirable properties in lead aprons and provide the proper or better shielding properties against ionizing radiation, the tendency is now going to use ferrite as a shielding material. The co-precipitation method was utilized to prevent any foreign phases in the investigated MZN nano-ferrite. X-ray diffraction (XRD) and Fourier transmission infrared spectroscopy (FTIR) methods were used to analyze the manufactured sample. As proven by XRD and FTIR, the studied materials have their unique spinel phase with cubic structure Fd3m space group. The DC resistivity of Mg-Zn ferrite was carried out in the temperature range (77-295 K), and its dependence on temperature indicates that there are different charge transport mechanisms. The Mössbauer spectra analysis confirmed that the ferrimagnetic to superparamagnetic phase transition behaviour depends on Zn concentration. The incorporation of Zn to MZF enhanced the nano-ferrite density, whereas the addition of different Zn-oxides reduced the density for nano-ferrite samples. This variation in density changed the radiation shielding results. The sample containing high Zn (MZF-0.5) gives us better results in radiation shielding properties at low gamma, so this sample is superior in shielding results for charged particles at low energy. Finally, the possibility to use MZN nano-ferrite with various content in different ionizing radiation shielding fields can be concluded.

SELECTION OF CITATIONS
SEARCH DETAIL
...